Home Application Notes Using Tissue Oxygen Levels to Assess Ex Vivo Brain Slice Quality
Neuroscience Voss_Cover_Application notes_1680x600px

Using tissue oxygen levels to assess ex vivo brain slice quality

Measurement of tissue oxygen partial pressure provides an easy, quick and reliable method for screening and controlling for variation in ex vivo acute brain slice viability.

Introduction

The acute ex vivo brain slice model is a versatile tool for investigating neurophysiological processes, allowing experimental conditions to be tightly controlled. However, the utility of the method can be compromised by variation in tissue quality, which can be difficult to reliably assess using simple electrophysiological approaches.

We all know that animals rely on oxygen to fuel the production of energy to sustain living tissue. Intuitively, it is also well understood that the more active the tissue, the greater the oxygen requirement to maintain that activity. In this study, we utilized this simple relationship to develop a straightforward method for reliably assessing the quality of acute tissue slices, following the rationale that healthier tissue will consume more oxygen.

If one knows the tissue oxygen solubility and diffusion characteristics (the “Krogh” coefficient), oxygen consumption can be accurately quantified from the curvature of the tissue depth versus oxygen partial pressure profile. However, accurate tissue oxygen profiling is time consuming and requires offline calculation. We hypothesized that the tissue oxygen minimum level (pO2min) would provide a more accessible method.

Tissue oxygen profile

Laboratory setup

The appeal of this method is its simplicity. Using a Unisense oxygen electrode attached to a standard micromanipulator, the electrode is advanced through the tissue until the oxygen partial pressure reaches pO2min. The electrodes can be retracted and advanced two or three times to confirm the true nadir in oxygen level has been identified.

Laboratory setup_Logan Voss

Results and Conclusion

We have shown that pO2min correlates with oxygen consumption rate and tissue viability — the lower pO2min, the higher the tissue oxygen consumption and the healthier the tissue. If pO2min is zero, oxygen supply is not meeting tissue demand and the flow rate of the perfusate should be increased. The pO2min value can be used to discard unhealthy tissue or to control for variation in tissue health from one experiment to another. For the experimental parameters in this study (mouse cerebro-cortical slices perfused at room temperature at a flow rate of 6 mL/min), strong viable tissue was reflected in pO2min values of 0-50 mmHg in population-active tissue — and 150-200 mmHg in quiescent tissue.

Tissue oxygen minimum is simple to measure and provides a robust estimate of ex vivo tissue viability status. While the specific pO2min values will vary with preparation and experimental parameters, the principle is widely applicable across tissue types and perfusion platforms.

You can read more in the article by Voss et al. “Tissue oxygen partial pressure as a viability metric for ex vivo brain tissue slices”, Journal of Neuroscience Methods 396 (2023) 109932 and in the article by Steyn-Ross et al. “Determination of Krogh Coefficient for oxygen consumption measurement from thin slices of rodent cortical tissue using a Fick’s law model of diffusion”, Int. J. Mol. Sci. 2023, 24, 6450.

Microprofiling System Neuroscience

“The Unisense hardware, software and electrodes work flawlessly for the applications I use in the laboratory and the customer service is top-drawer”.
Dr. Logan Voss, Dept Anaesthesia, Waikato DHB

The application note was written by

Dr. Logan Voss
Department of Anaesthesia
Te Whatu Ora Health New Zealand Waikato
Hamilton 3204, New Zealand

Related publications

Endogenous brain-sparing responses in brain pH and PO2 in a rodent model of birth asphyxia
Pospelov, Alexey S. et al. (2020), Acta Physiologica, vol. 229, 1-18
Read more
Selective inhibition of mitochondrial respiratory complexes controls the transition of microglia into a n⁠…
Chausse, Bruno et al. (2020), Brain, Behavior, and Immunity, vol. 88, 802-814
Read more
Microalgae-based photosynthetic strategy for oxygenating avascularised mouse brain tissue – An in vitro p⁠…
Voss, Logan J. et al. (2021), Brain Research, vol. 1768, 147585
Read more

Application Notes

All
Biogeochemistry
Biomedicine
Hydrogen/Renewable Energy
Microbiology
Plant science
Wastewater
Neuroscience Voss_Button Images_Application notes_700x400
Biomedicine
Using Tissue Oxygen Levels to Assess Ex Vivo Brain Slice Quality

Tissue oxygen partial pressure for screening and controlling for variation in ex vivo acute brain slice viability

Nitrifying Microorg_Button Images_Application notes_700x400
Microbiology Wastewater
Understanding the Denitrification Dynamics of Nitrifying Microorganisms

How nitrifying microorganisms are able to produce nitrous oxide through denitrification

H2 Water splitting_Button Images_Application notes_700x400
Hydrogen/Renewable Energy
Water Splitting Studies

Hydrogen and oxygen microsensors for direct and real-time detection of dissolved gas in photocatalytic/electrochemical studies

The winning formula_Button Images_Application notes_700x400
Biogeochemistry Plant science
The Winning Formula

Learn in the laboratory - explore and confirm in the field!

Studying the effects of leaf gas
Biogeochemistry Plant science
Studying the Effects of Leaf Gas Film Using Microsensors

Leaf gas films are hypothesized to improve internal aeration of the plant during the day

Sediment profiling analysis_Button Images_Application notes_700x400
Biogeochemistry
Sediment Profiling Analysis

How to quantify the consumption rate of oxygen as well as the oxygen exchange rate across the water - sediment interface

Mitigation of N2O_Button Images_Application notes_700x400
Microbiology Wastewater
Mitigation of N2O Emissions from Wastewater Biofilms

Mitigation of N2O Emissions from Wastewater Biofilms

Nitrogen removal in ww_Button Images_Application notes_700x400
Microbiology Wastewater
Nitrogen Removal in Wastewater

The use of oxygen microelectrodes to study nitritation biofilms with different geometries

Biofilm O2 and N2O microprofiles_Button Images_Application notes_700x400
Microbiology
Biofilm – O2 and N2O Microprofiles in Samples from CF patients

O2 and N2O microprofiles in sputum samples from cystic fibrosis patients with chronic Pseudomonas aeruginosa lung infection

Biofilm P. Aeruginosa_Button Images_Application notes_700x400
Microbiology
Biofilm – Oxygen and Redox Potential in P. Aeruginosa

Oxygen and Redox Potential in Pseudomonas Aeruginosa Colony Biofilms

Biomedical implications H2 Drinking water_Button Images_Application notes_700x400
Biomedicine
Biomedical Implications of H2-Enriched Drinking Water

Hydrogen microsensors used to document the possible positive effect of H2-enriched drinking water as a biomedical treatment.

H2 in mice_Button Images_Application notes_700x400
Biomedicine
H2 Measurements in Mice

Analyzing gas cavity formation at implant sites

Cell culture profiling_Button Images_Application notes_700x400
Biomedicine
Cell Culture Profiling

Studying oxygen conditions of in vitro cell cultures

Comparative medicine_Button Images_Application notes_700x400
Biomedicine
Microsensors in Comparative Medicine Research

Oxygen Microprofiles in the Retina of Antarctic Icefish

Cancer research_Button Images_Application notes_700x400
Biomedicine
Microsensors in Cancer Research

Oxygen consumption rate measurements of 4T1 cancer cells using the MicroRespiration System