

The Microsensor Company

Demonstration of Activity Calculation - Software

February 2022 Tage Dalsgaard

A few rules before we get started

1. Please turn off your microphone

2. Questions: During lecture please use chat.

After lecture you can unmute and ask.

Very application-specific questions may be better answered in a private session afterwards.

You will get access to all the presentations as PDF's + recordings shortly after the workshop.

Online Biogeochemistry Workshop

Wednesday 23 February

14:30-15:30 CET - Introduction to Microsensors

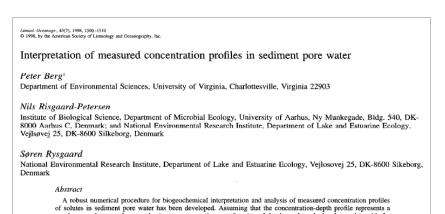
15:45-16:45 CET - Lab-based Studies

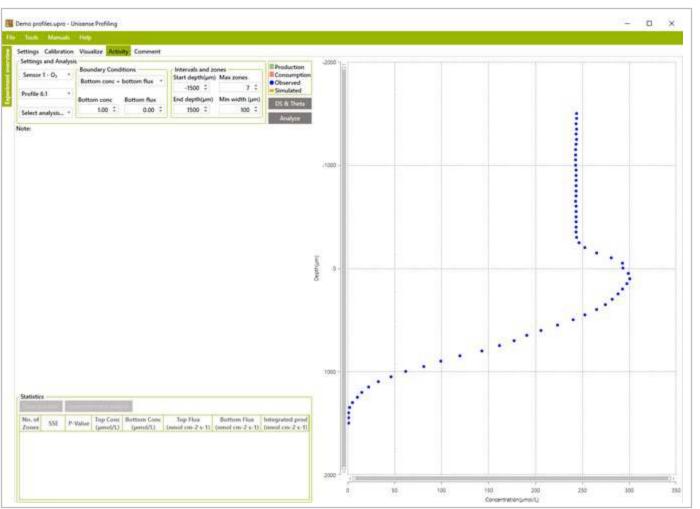
Thursday 24 February

14:30-15:30 CET - Field Studies

15:45-16:30 CET - Demonstration of Field Microprofiling System

16:45-17:30 CET - Demonstration of Activity Calculation - Software

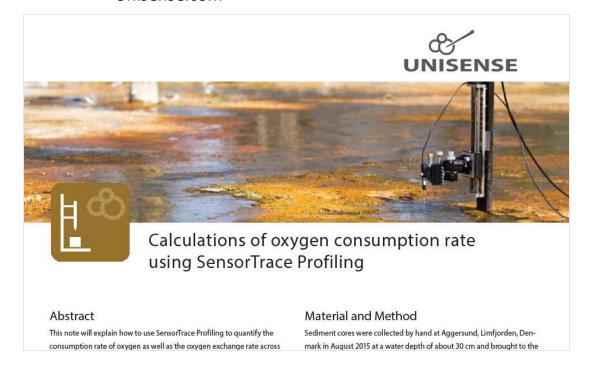


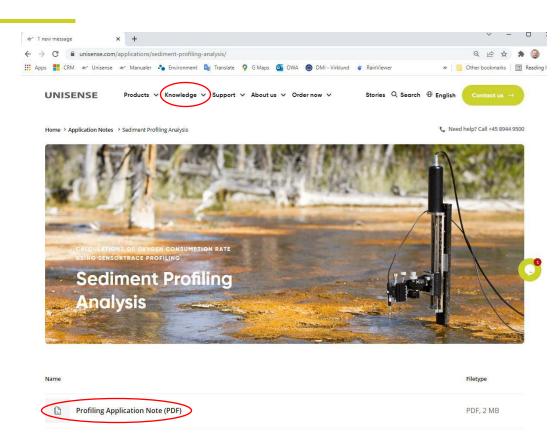

Profile analysis

Calculation of production and consumption rates from microprofiles

Based on the method from:

Berg, P., N. Risgaard-Petersen, and S. Rysgaard. 1998. Interpretation of measured concentration profiles in sediment pore water. Limnol. Oceanogr. 43: 1500–1510.

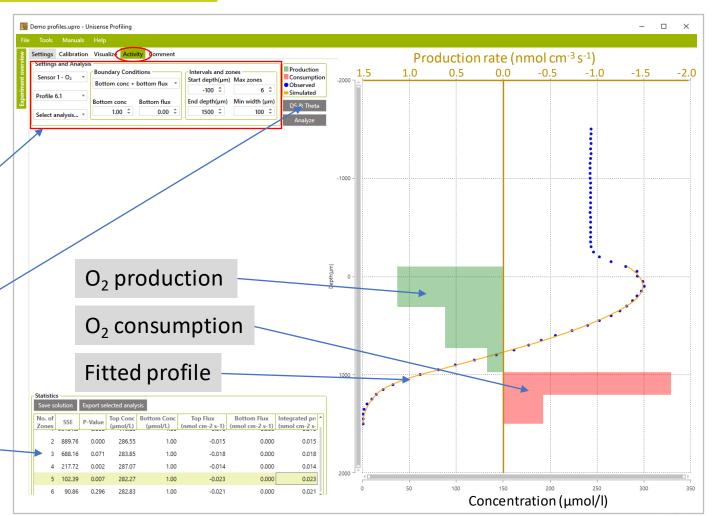




Demo profiles

Demonstration profiles installed with SensorTrace Suite

- ProfilingDemo.upro Read only
 - \Documents\Unisense Data\Demo Experiments
- Profiling application note
 - Unisense.com

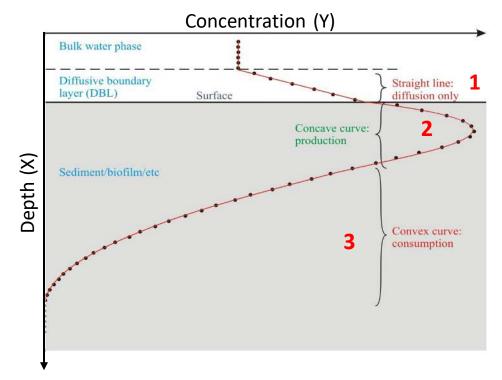

Profile analysis

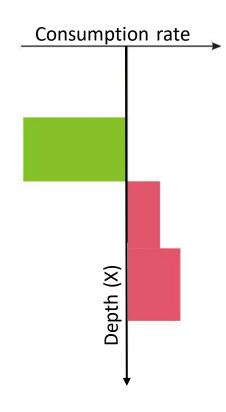
Calculation of production and consumption rates from microprofiles

Select profile, depth range and boundary conditions

Specify diffusion coefficient and porosity

Output with rates and statistic parameters

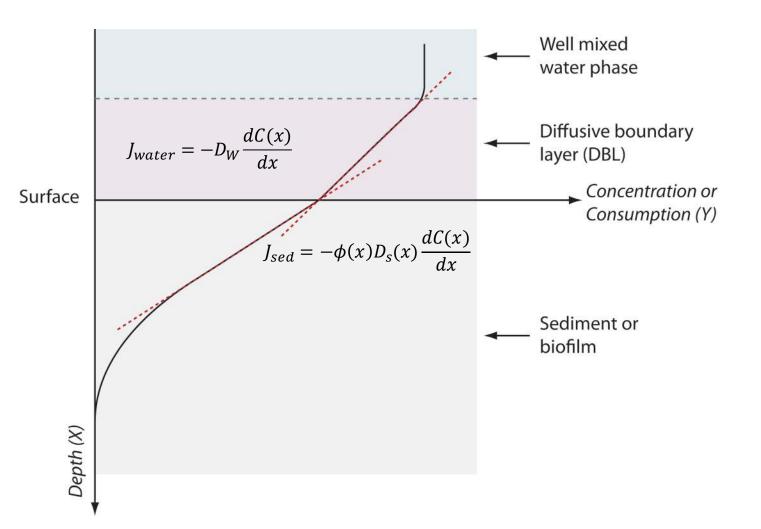




Microprofiles - Theory

Example:

Biofilm with O_2 production in top layer, O_2 consumption below


Qualitative information from profiles

- Straight line: No net consumption or production only diffusional transport.
- 2. Concave: Net production (e.g. O₂ production by photosynthesis, H₂S production by sulphate reduction)
- 3. Convex: Net consumption (e.g. Respiration, oxidation of reduced compounds)

Microprofiles - Theory

1-dimensional system – Steady state

Quantitative Information from microprofiles

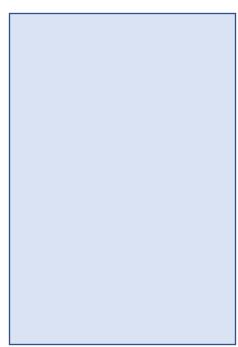
- **1. C(x) Concentration**: Penetration depth, overlapping zones
- 2. dC(x)/dx Flux: Into sediment, within sediment

 D_w = Diffusion coefficient in water

 $\phi(x)$ = Porosity

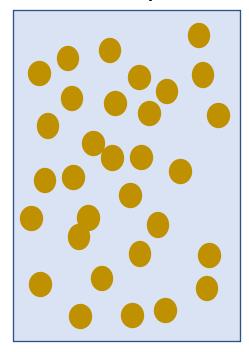
 $D_s(x) = Diffusivity$

 $D_s(x) = D_w \times \phi(x)$ (simplest form)

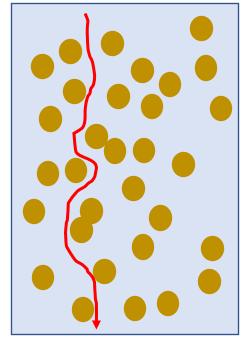


Diffusion in pure water and sediment

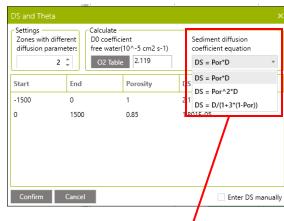
$$J_w = -D_W \frac{dC(x)}{dx}$$


$$J_{sed} = -\phi(x)D_s(x)\frac{dC(x)}{dx}$$

Pure water


100% space for diffusion Random movement

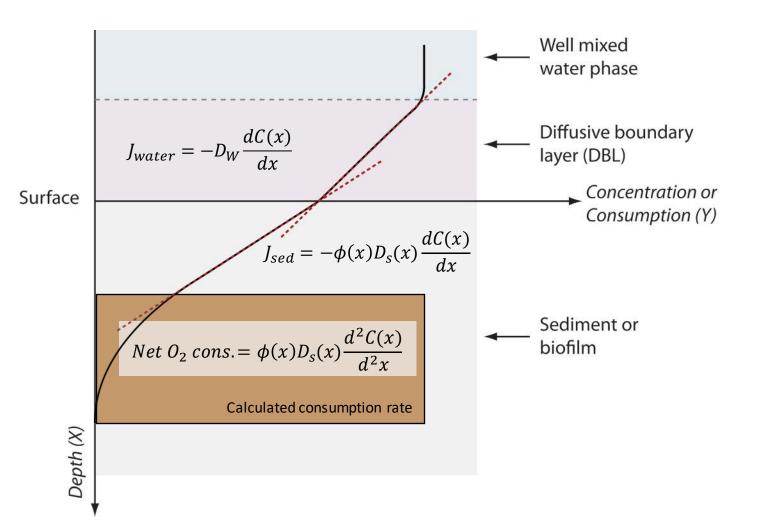
Porosity



Example:
Porosity = 0.8 =>
80% space for diffusion


Tortuosity

Longer diffusion path $Ds(x) = Dw \times Porosity$


Sediment diffusion coefficient equation

Microprofiles - Theory

1-dimensional system – Steady state

Quantitative Information from microprofiles

- **1. C(x) Concentration**: Penetration depth, overlapping zones
- 2. dC(x)/dx Flux: Into sediment, within sediment
- 3. d²C(x)/dx² Production and consumption: Activity distribution within the sediment

 D_w = Diffusion coefficient in water

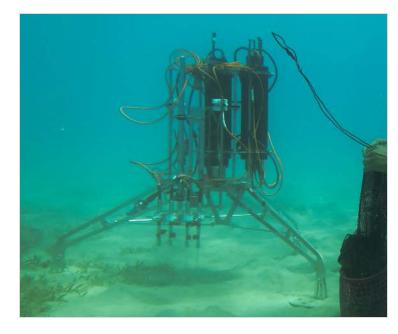
 $\phi(x)$ = Porosity

 $D_s(x) = Diffusivity$

 $D_s(x) = D_w \times \phi(x)$ (simplest form)

Microprofiles from different instruments

Lab Microprofiling System


Lab conditions

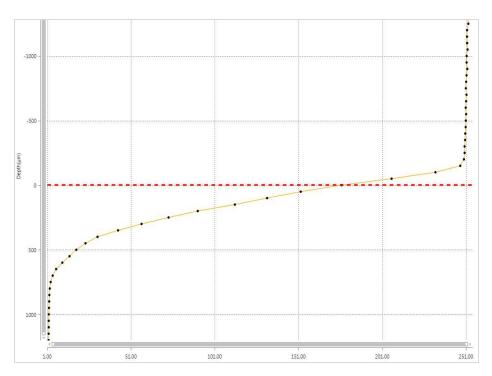
Field Microprofiling System

Down to 10 m water depth

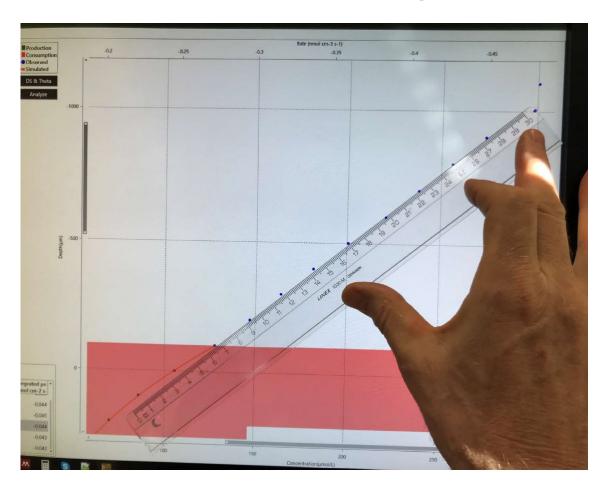
In situ Microprofiling System

Down to 6000 m water depth

SensorTrace Profiling will record or import profiles from all system for analysis

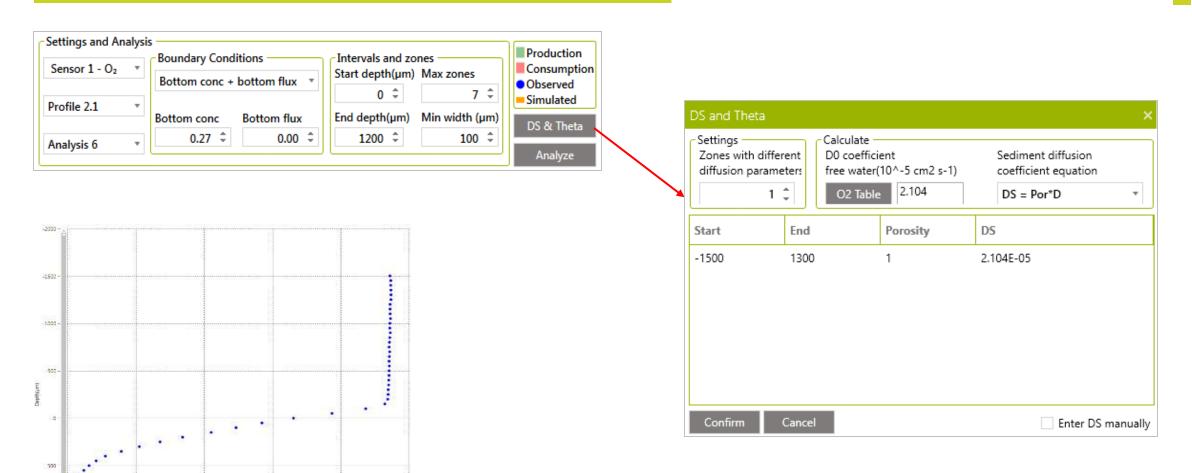

Find the sediment surface

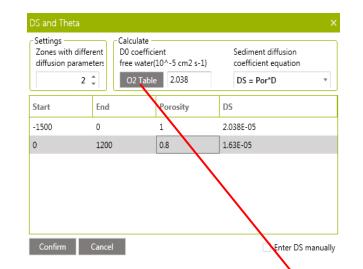
Stereo microscope while measuring

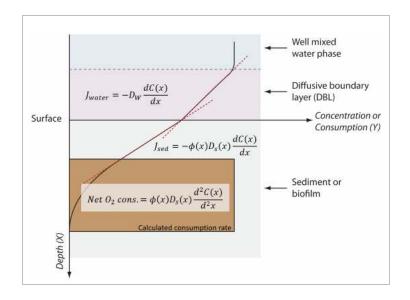


Find the sediment surface

Locate surface after measuring

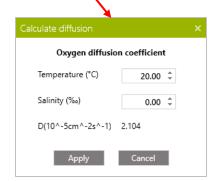



Setting depth interval and boundary conditions



Diffusion coefficient

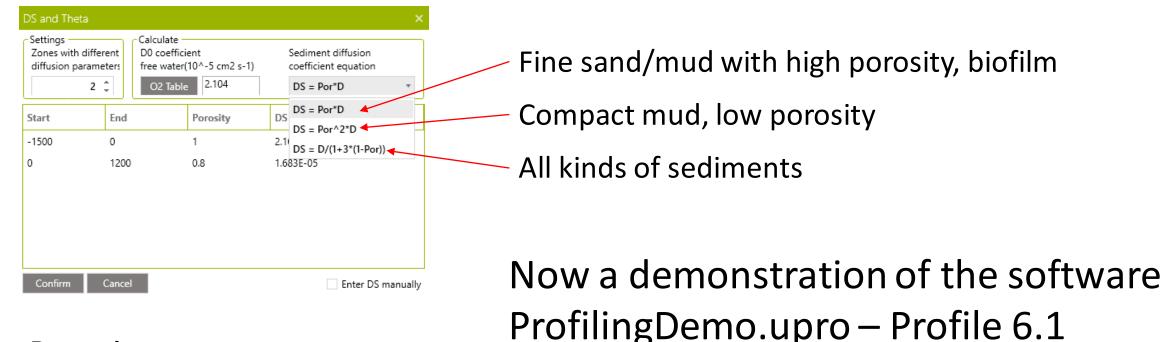
- Enter the diffusion coefficient for O₂ in water
- Depends on salinity and temperature
- As many depth intervals as you like



DATA-TABLE 1

by Niels Ramsing & Jens Gundersen

Diffusion coefficient for oxygen at different temperatures and salinities of seawater


Salinity	Temp	perature	e (°C)														
(‰)	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.0	14.0	15.0	16.0
0.0	1.1041	1.1465	1.1899	1.2344	1.2798	1.3261	1.3734	1.4214	1.4702	1.5198	1.5700	1.6209	1.6723	1.7243	1.7769	1.8300	1.8836
1.0	1.1026	1.1448	1.1881	1.2324	1.2777	1.3239	1.3709	1.4188	1.4675	1.5169	1.5669	1.6176	1.6689	1.7208	1.7732	1.8261	1.8796
2.0	1.1011	1.1432	1.1863	1.2305	1.2756	1.3216	1.3685	1.4162	1.4647	1.5140	1.5639	1.6144	1.6656	1.7173	1.7695	1.8223	1.8756
3.0	1.0996	1.1415	1.1845	1.2285	1.2735	1.3193	1.3661	1.4137	1.4620	1.5111	1.5608	1.6112	1.6622	1.7137	1.7658	1.8185	1.8717
4.0	1.0981	1.1399	1.1827	1.2266	1.2714	1.3171	1.3637	1.4111	1.4593	1.5082	1.5578	1.6080	1.6588	1.7102	1.7622	1.8147	1.8677
5.0	1.0966	1.1382	1.1809	1.2246	1.2693	1.3148	1.3613	1.4085	1.4566	1.5053	1.5547	1.6048	1.6555	1.7068	1.7586	1.8109	1.8638
6.0	1.0950	1.1366	1.1792	1.2227	1.2672	1.3126	1.3589	1.4060	1.4539	1.5024	1.5517	1.6017	1.6522	1.7033	1.7550	1.8072	1.8599
7.0	1.0935	1.1350	1.1774	1.2208	1.2651	1.3104	1.3565	1.4034	1.4512	1.4996	1.5487	1.5985	1.6489	1.6998	1.7514	1.8034	1.8560
8.0	1.0921	1.1333	1.1756	1.2189	1.2631	1.3082	1.3541	1.4009	1.4485	1.4968	1.5457	1.5953	1.6456	1.6964	1.7478	1.7997	1.8522
9.0	1.0906	1.1317	1.1738	1.2169	1.2610	1.3060	1.3518	1.3984	1.4458	1.4939	1.5427	1.5922	1.6423	1.6930	1.7442	1.7960	1.8483
10.0	1.0891	1.1301	1.1721	1.2150	1.2589	1.3037	1.3494	1.3959	1.4431	1.4911	1.5398	1.5891	1.6390	1.6895	1.7406	1.7923	1.8445
11.0	1.0876	1.1285	1.1703	1.2131	1.2569	1.3015	1.3471	1.3934	1.4405	1.4883	1.5368	1.5860	1.6358	1.6861	1.7371	1.7886	1.8407
12.0	1.0861	1.1268	1.1686	1.2112	1.2549	1.2994	1.3447	1.3909	1.4378	1.4855	1.5339	1.5829	1.6325	1.6828	1.7336	1.7849	1.8369
13.0	1.0846	1.1252	1.1668	1.2093	1.2528	1.2972	1.3424	1.3884	1.4352	1.4827	1.5309	1.5798	1.6293	1.6794	1.7300	1.7813	1.8331
14.0	1.0832	1.1236	1.1651	1.2075	1.2508	1.2950	1.3401	1.3859	1.4326	1.4799	1.5280	1.5767	1.6261	1.6760	1.7265	1.7776	1.8293
15.0	1.0817	1.1220	1.1633	1.2056	1.2488	1.2928	1.3377	1.3835	1.4300	1.4772	1.5251	1.5737	1.6229	1.6727	1.7231	1.7740	1.8256
16.0	1.0802	1.1204	1.1616	1.2037	1.2467	1.2907	1.3354	1.3810	1.4274	1.4744	1.5222	1.5706	1.6197	1.6693	1.7196	1.7704	1.8218
17.0	1.0788	1.1188	1.1599	1.2018	1.2447	1.2885	1.3331	1.3786	1.4248	1.4717	1.5193	1.5676	1.6165	1.6660	1.7161	1.7668	1.8181

Sediment diffusivity

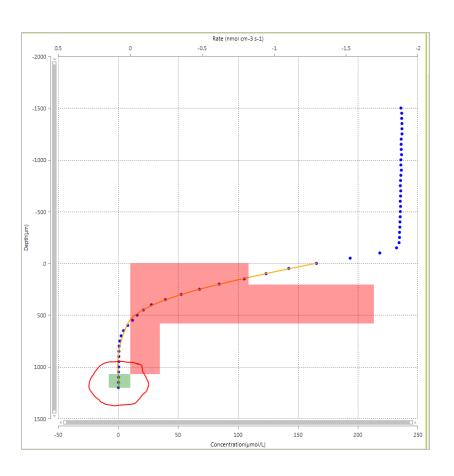
How should diffusivity be calculated?

Porosity measurement

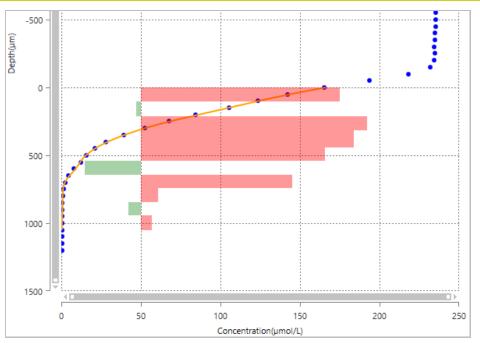
- Core sediment slicing e.g. every 5 mm
- Weight loss after drying / specific density water

Result – Statistics

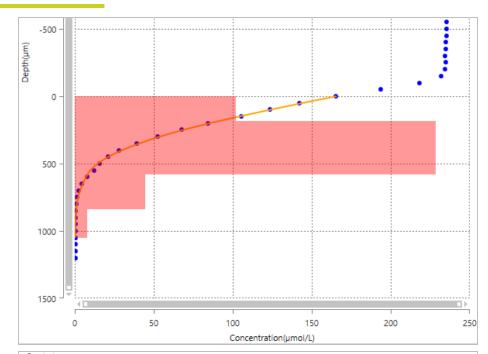
Save so		Export se	lected analy	sis			
No. of Zones	SSE	P-Value	Top Conc (µmol/L)	Bottom Conc (µmol/L)	Top Flux (nmol cm-2 s-1)	Bottom Flux (nmol cm-2 s-1)	Integrated pri * (nmol cm-2 s-
2	891.00	0.000	286.74	1.00	-0.015	0.000	0.015
3	688.98	0.071	284.07	1.00	-0.018	0.000	0.018
4	219.23	0.002	287.24	1.00	-0.014	0.000	0.014
5	102.52	0.007	282.56	1.00	-0.023	0.000	0.023
6	93.61	0.361	283.10	1.00	-0.021	0.000	0.021


- Choose the right number of zones:
 - P: Did adding this zone improve the fit (P < 0.05)
 - SSE: Sum of squared errors
 - SSE and P-value should be as small as possible.
 - Look at the results and use common sense

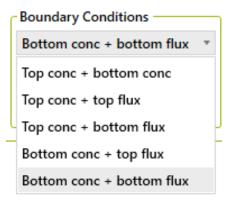
Result – Avoid obvious errors

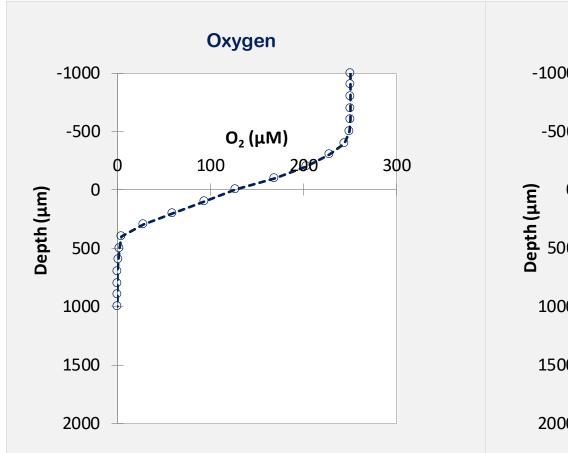

Save solution Export selected analysis									
No. of	SSE	P-Value	Top Conc	Bottom Conc	Top Flux	Bottom Flux	Integrated pr		
Zones	33L	1 - Value	(µmol/L)	(µmol/L)	(nmol cm-2 s-1)	(nmol cm-2 s-1)	(nmol cm-2 s-		
2	891.00	0.000	286.74	1.00	-0.015	0.000	0.015		
3	688.98	0.071	284.07	1.00	-0.018	0.000	0.018		
4	219.23	0.002	287.24	1.00	-0.014	0.000	0.014		
5	102.52	0.007	282.56	1.00	-0.023	0.000	0.023		
6	93.61	0.361	283.10	1.00	-0.021	0.000	0.021		

- Production or consumption in zones where it is not possible
 - Analysis too deep into the anoxic zone
 - Maximum number of zones too high



Results – Number of zones


Save solution Export selected analysis									
	No. of Zones	SSE	P-Value	Top Conc (µmol/L)	Bottom Conc (µmol/L)	Top Flux (nmol cm-2 s-1)	Bottom Flux (nmol cm-2 s-1)	Integrated pro * (nmol cm-2 s-	
	6	7.58	0.069	165.46	0.27	0.058	0.000	-0.058	
	7	6.07	0.347	165.50	0.27	0.058	0.000	-0.058	
	8	6.16	1.000	165.51	0.27	0.058	0.000	-0.058	
	9	5.10	0.457	166.02	0.27	0.064	0.000	-0.064	
	10	6.00	1.000	165.99	0.27	0.063	0.000	-0.063	




_S	tatistics								_
	Save solution		Export se	lected analy	sis				
1111	No. of Zones	SSE	P-Value	Top Conc (µmol/L)	Bottom Conc (µmol/L)	Top Flux (nmol cm-2 s-1)	Bottom Flux (nmol cm-2 s-1)	Integrated pro (nmol cm-2 s-	*
	3	37.81	0.212	167.63	0.27	0.066	0.000	-0.066	ı
	4	20.13	0.030	165.59	0.27	0.059	0.000	-0.059	
	5	13.34	0.102	165.06	0.27	0.054	0.000	-0.054	
	6	7.58	0.069	165.46	0.27	0.058	0.000	-0.058	۱
	7	6.07	0.347	165.50	0.27	0.058	0.000	-0.058	
L									Ŧ

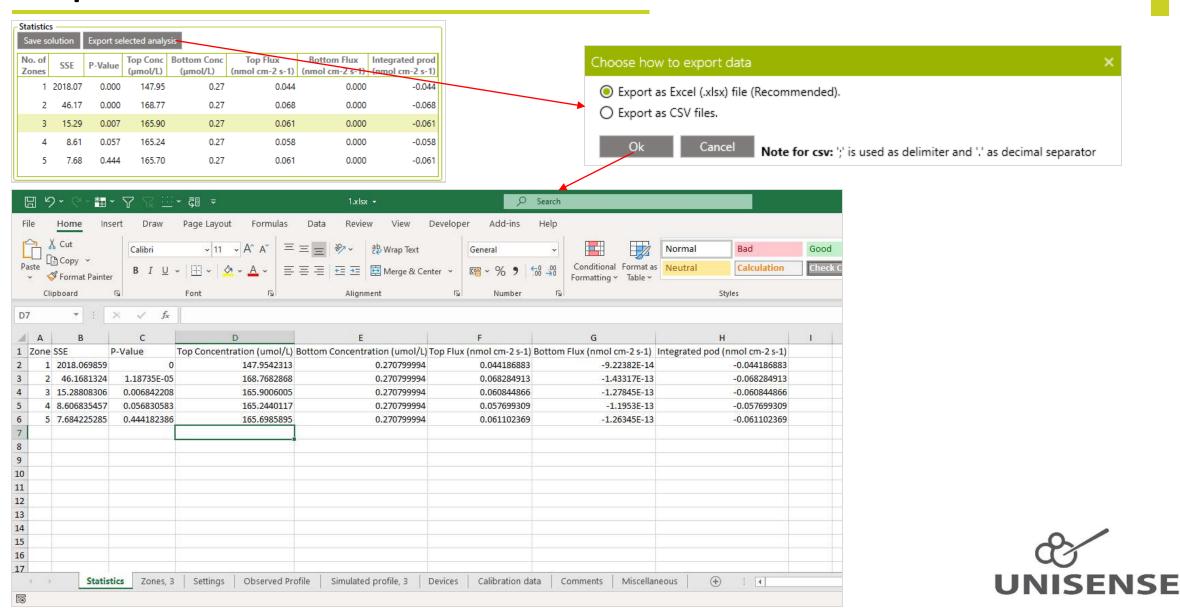
Other solutes than O₂

Boundary conditions

Bottom conc. = 0Bottom flux = 0 **Boundary conditions**

Top conc. = 0

Top flux = 0



Play arround

- Boundary conditions
- Depth interval
- The oxygen diffusion rate e.g. by changing the temperature and salinity
- Change the formula for the Ds calculation
- Porosity

Export data

Summary

SensorTrace Profiling – Activity calculations

- Calculate fluxes, consumption and production rates from high resolution concentration profiles.
- Fick's first and second law.
- Diffusivity and boundary conditions must be defined
- Use a stepwise optimization using the model-line and statistical values

Unisense Microsensor Academy:

https://www.unisense.com/support/knowledge

Contact us: sales@unisense.com