

The Microsensor Company

Introduction to Microsensors

February 2022 Tage Dalsgaard

Online Biogeochemistry Workshop

Wednesday 23 February

14:30-15:30 CET - Introduction to Microsensors

15:45-16:45 CET - Lab-based Studies

Thursday 24 February

14:30-15:30 CET - Field Studies

15:45-16:30 CET - Demonstration of Field Microprofiling System

16:45-17:30 CET - Demonstration of Activity Calculation - Software

A few rules before we get started

1. Please turn off your microphone

2. Questions: During the lecture please use chat.

After the lecture you can unmute and ask.

Very application-specific questions may be better answered in a private session afterwards.

You will get access to all the presentations as PDF's + recordings shortly after the workshop.

About me

- Tage Dalsgaard, Ph.D. in biogeochemistry/microbiology
- Application Scientist
- With Unisense for 4 years
- Previously Senior Scientist at National Environmental Research Institute and Aarhus University, Denmark
- >25 years of academic research experience in microbiology and biogeochemistry (marine N and C cycling)

Outline

- About Unisense
- Sensor production
- Amperometric microsensors
 - O₂ electrochemical sensor in detail
 - Other sensors (H₂S, N₂O, NO, H₂)
- Potentiometric microelectrodes
- Optode for O₂
- Adaptation and customization
- Choosing the right tip size
- Calibration

About Unisense

- Established in 1998
- Largely owned by scientists
- Employees: 23 (11 with Ph.D.)
- > 20 years of experience in developing, constructing, and applying microsensors
- ISO 9001 certified
- Website: www.unisense.com

About Unisense

- Sell and collaborate worldwide
- Network of +5000 customers
- Distributor network
- 2 annual workshops in Denmark, annual workshop in Asia, plus advanced Field Systems training
- >1000 guest for training and instructions
- More than 5.000 scientific email Q&As per year
- More than 2500 peer-reviewed publications with our sensors

Workshops at Unisense

Support team

- Line Daugaard, Ph.D., Product Manager
- Tage Dalsgaard, Ph.D., Application Scientist
- Lars Hauer Larsen, Ph.D., Chief Scientific Officer
- Andrew Cerskus, Ph.D., Sales Manager US/CA
- Thomas Rattenborg, Ph.D., CEO/CCO
- Mikkel Holmen Andersen, Ph.D., Chief Technical Officer
- Michael Nielsen, Ph.D., Senior Application Scientist
- Maria Hedegaard, Sales and Marketing Assistant
- Mette Gammelgaard, Administration and shipping
- Ole Pedersen, Prof., University of Copenhagen

- High spatial resolution (as tip size)
- Non-destructive/minimally invasive
- Do not disturb chemical gradients
- Fast response
- Real-time measurements
- Low analyte consumption
- Low sensitivity to stirring (minimal artefact due to turbulence/diffusivity gradients)

Microbial mats

Nielsen, M., N. P. Revsbech, and M. Kühl. 2015. Microsensor measurements of hydrogen gas dynamics in cyanobacterial microbial mats. Front. Microbiol. 6: 1–12. doi:10.3389/fmicb.2015.00726

Effects of run-off in Arctic Lake Hazen

In Situ measurements

Sensor Production

The basic microsensor

Amplifier

SensorTrace Suite

Microsensors - adaptations

Introduction to microsensors

Types of microsensors

- Amperometric microsensor
 - Produce an electrical current (pA, 10⁻¹²)
 - Typically is a Clark-type sensor
 - Example: O₂, N₂O and H₂S sensors
- Potentiometric microelectrode
 - Produce a voltage signal (mV)
 - Reference electrode immersed in the SAME solution is required
 - Example: pH and Redox (E_H) electrode
- Micro optodes
 - Fluorophore at the tip exited with light
 - Fluorescence varies with O₂ concentration

Unisense microsensors and -electrodes

Amperometric microsensors

- Oxygen (O₂)
- Hydrogen sulfide (H₂S)
- Nitrous oxide (N₂O)
- Nitric oxide (NO)
- Hydrogen (H₂)
- STOX (O₂ down to 5 10 nM)

Potentiometric microelectrodes

- pH
- Redox potential (E_H , ORP)
- Electric potential

Optical microsensors

Optode (O₂)

Other microsensors

- Temperature
- Diffusivity
- Flow

Amperometric microsensors – Clark type

Start with Oxygen sensor

- Principles
- Why use microsensors
- Continue with the other sensors

Oxygen sensor principle

Oxygen sensor principle

O₂ sensor electrochemistry

(A)
$$O_2 + 2H_2O + 2e^- \rightarrow H_2O_2 + 2OH^-$$

(B)
$$H_2O_2 + 2e^- \rightarrow 2OH^-$$

Cathode reaction

$$O_2 + 2H_2O + 4e^- \rightarrow 4OH^-$$

Electrical current

Anode reaction

$$4Ag \rightarrow 4Ag^{+} + 4e$$

Amperometric sensor - Signal versus polarization

Amperometric sensor pre-polarization

- High spatial resolution (as tip size)
- Non-destructive (sample can be measured undisturbed and repetitively)
- Low analyte consumption

How long will it take for an O_2 microsensor with an output of 100 pA to consume all the O_2 in 1 ml of seawater?

34 years

- High spatial resolution (as tip size)
- Non-destructive (sample can be measured undisturbed and repetitively)
- Low analyte consumption
- Low sensitivity to stirring (minimal artefact due to turbulence/diffusivity gradients)

- High spatial resolution (as tip size)
- Non-destructive (sample can be measured undisturbed and repetitively)
- Low analyte consumption
- Low sensitivity to stirring (minimal artefact due to turbulence/diffusivity gradients)
- Fast response

- High spatial resolution (as tip size)
- Non-destructive (sample can be measured undisturbed and repetitively)
- Low analyte consumption
- Low sensitivity to stirring (minimal artefact due to turbulence/diffusivity gradients)
- Fast response
- Pressure tolerant (6000 m)

Oxygen microsensor - Summary

- Amperometric sensor, a picoammeter is needed
- Tip size from 3 to 500 μm and needle versions
- 90% response time from <0.3 sec and up to 5 sec
- Stirring sensitivity from <1% and up to 5% or more
- Temperature sensitivity of 1-3% °C⁻¹
- Linear response, i.e. two-point calibration at air saturation and zero O₂
- Available as laboratory or in situ sensor

Sulfide sensor principle

2 types of H₂S sensors

- SULF type
- H2S type

Hydrogen sulfide sensor chemistry

SULF-type (type-I)

Principle

- Sulfide reacts on the anode to form SO₄²⁻
- More sensitive (8 e⁻ process)

Interferences

Sensitive to H₂

H2S-type (type II)

Principle

- Sulfide is oxidized to elemental sulphur (2 e⁻) via an ironcyanide complex
- The iron-cyanide redox mediator reacts on the anode

<u>Interferences</u>

- Sensitive to light
- Painted black but may still be affected

Sulfide pH speciation

Distribution of sulfide species is pH dependent:

$$H_2S \leftrightarrow HS^- + H^+ \leftrightarrow S^{2-} + 2H^+$$

Implications

Calibration

Total sulfide must be calculated

Calculating total sulfide

- Sensor measures only H₂S
- Total sulfide = $H_2S + HS^- + S^{2-}$
- Total sulfide can be calculated from [H₂S] and pH

$$[S^{2-}_{tot}] = [H_2S] \cdot \left(1 + \frac{K_1}{[H_3O^+]} + \frac{K_1K_2}{[H_3O^+]^2}\right)$$

 K_1 and K_2 are both temperature and salinity dependent and may be found in the literature!

H₂S sensor – SULF-type

- Linear response (up to 300 μM)
- Wide range
 - Standard: 0-500 μM
 - High range up to 10 mM
 - Low range detection limit of 3 nM
- Life-time 6-12 months
- Stirring sensitivity < 2%
- Temperature sensitive (1-3% °C⁻¹)
- Needs pH to calculate total sulfide
- Response time <10 s

Versions: 10 μm, 25 μm, 50 μm, 100 μm, 500 μm, Needle, Micro Resp, flow cells, steel tube

UNISENSE

N₂O sensor

Waste water N₂O sensor

N₂O sensor

N₂O sensor characteristics:

- Very stable sensor
- Wide range (0-500 μ M, customized to 28 mM)
- Std. det. limit is 0.1 μM (Low Range 25 nM)
- Expected life-time 4-6 months
- Long pre-polarization to stabilize
- Long response time
- Linear response easy calibration
- Quite specific, NO interferes
- Stirring insensitive
- Temperature sensitivity of 1-3% °C⁻¹

Versions:

25 μm, 50 μm, 100 μm, 500 μm, Micro Resp, needles, flow cells, steel tube, R (stable for waste water)

Nitric oxide sensor

NO sensor characteristics:

- NO oxidation on carbon surface
- Detection limit 3 or 25 nM
- High temperature influence
- Short membrane must be grounded
- Difficult calibration, NO is an unstable molecule
- Long polarization time to get stable base line
- Fast response time (1 or 10 sec)
- Linear response (0 3 μM)
- Some interferents
- Very sensitive to stirring

Versions: 15 μm, 50 μm, 100 μm, 500 μm, Needles, Micro Resp, steel tube, flow cells

Hydrogen sensor - Two versions

H₂ sensor

Sensitive to H₂S

Versions:

 $10 \ \mu m$, $25 \ \mu m$, $50 \ \mu m$, $100 \ \mu m$, $500 \ \mu m$, Needles, Micro Resp, Flow cells, Steel tube

H₂-X sensor

In-sensitive to H₂S

 $50 \, \mu m$, $100 \, \mu m$, $500 \, \mu m$, Needles, Micro Resp, Flow cells, Steel tube

Hydrogen sensor - Two versions

H₂-sensor characteristics:

- H₂-oxidation on metal surface
- Linear response (0 800 μM)
- Detection limits
 - 0.3 μM standard
 - 0.05 μM low range
- Temperature sensitivity of 1-3% °C⁻¹
- Expected life time > 12 months
- Response time < 10 sec standard
- H₂S interference

H₂X-sensor characteristics:

- Same as H₂ version except:
 - Expected life time > 6 months
 - Response time < 20 sec standard
 - No H₂S interference

Amperometric sensors - amplifiers

UniAmp amplifier - Multi ch.

In situ UniAmp amplifier

Field Microsensor Multimeter

UniAmp amplifier - Single ch.

Potentiometric Microelectrodes

pH electrode principle

- Microelectrode is a miniaturized conventional pH electrode
- The proton sensitive glass allows measurements of proton activity in a solution
- A high impedance mV meter is required

pH electrode considerations

- Spatial resolution down to 50-100 μm
- External reference needed
 - Combination electrodes available
- Excellent for measurements in
 - Biofilms
 - Soft sediments
 - Tissues
- Needed for calculations of total sulphide!

Versions:

10 μm, 25 μm, 50 μm, 100 μm, 200 μm, 500 μm, Needles, Flow cells, Steel tube, Micro Resp pH-500C - Combination

Redox potential electrode

- The redox electrode is an exposed platinum (Pt) tip. Reference electrode needed
- Must be calibrated
- Limitations
 - Even a Pt surface can be contaminated
 - Problematic in reactive sediments
 - Always check calibration after measurements
 - Make multiple profiles

Versions: 10 μm, 25 μm, 50 μm, 100 μm, 200 μm, 500 μm, Needle, Flow cells, Steel tube, Micro Resp

RD-500C - Combination

Variations: Diameter

- All Unisense microsensors come in many sizes
- Clark type: Only thickness of glass wall changes

- Same internal design
- Same membrane size
- Same signal and consumption rate
- Glass walls thickened, by heat-collapsing the glass

Analyte

MicroOptode System

MicroOptode Sensor

- Fluorescent O₂ sensitive dye
- Fast responding
- E²PROM ID and calibration
- Retractable needle design
- Tip sizes: 50, 430 and 3000 μm

MicroOptode Meter

- 1 or 4 channels Optode only
- 1 channel Combined with electrochemical sensors
- Integrate with Unisense software

Working principle of optodes

Fluorescence in the absence of O_2 :

Quenching in the presence of O_2 :

Optical fibre optodes

Tip of fibre

50 μm 430 μm

3 mm

Optical fibre optodes

Fluorescence lifetime

In the time-domain:

Fluorescence life-time measurements

LED modulation frequency = 4 kHz Light pulse 10 ms => 40 periods

Choose the right O₂ sensor

Optodes and amperometric sensors - Advantages

O₂ Optode

- Long term stability
- Flexibility
- No H₂S interference
- Retractable tip
- 3000 μm mini sensor

Amperometric O₂ sensor

- Fast response
- Tip size (small)
- Rugged design for profiling
- Wide concentration range
- Large temperature range
- Not flexible
- Needle version

Microsensors - adaptations

Customizations

Physical:

- Length
- Diameter

Behaviour and response:

- Response time
- Sensitivity to stirring
- Concentration range (low range, high range)

Effects of tip size

Choosing the correct sensor size:

Small versus large tip diameter

- Higher profile resolution
- Less sample disturbance

Sensor tip size

Choosing the correct sensor size:

Small versus large tip diameter

- Higher profile resolution +
- Less sample disturbance +
- Faster response +
- More fragile

Effect of sensor:

O₂ supply unaffected Fast stabilization of signal O₂ supply impeded Drifting signal Underestimation of O₂

Tip size - Effect on diffusive boundary layer

Interference

May affect the sensor signal Examples:

- O_2 sensor: H_2S
- H2S-type sensor: Light
- SULF sensor: H₂
- N₂O sensor: NO
- H₂ sensor: H₂S

Electrical noise

Very low signals

- In the pA range (10⁻¹² A)
- Grounding important
 - Necessary for some sensors!
- Coaxial design of all sensors

Sensor calibration

Use experimental/in-situ conditions for sensor calibration whenever possible

- Same temperature
- Same salinity

Sensors for gases are linear

- Two-point calibration
 - One known concentration
 - Zero

Calibration chamber

Calibration kit

Oxygen calibration

Two point calibration

- Anoxic 0% O₂ (ascorbate, N₂ gas)
- Air saturated water (100% air, 20.9% O₂)
- Tabulated values for O₂ conc. at equilibrium between air and water as function of temperature and salinity.

Oxygen solubility at different temperatures and salinities of seawater														
Salinity Temperature (°C)														
(‰)	0.0	1.0	2.0	3.0	4.0	5.0	6.0	7.0	8.0	9.0	10.0	11.0	12.0	13.
0.0	456.6	444.0	431.9	420.4	409.4	398.9	388.8	379.2	369.9	361.1	352.6	344.4	336.6	329.
1.0	453.5	441.0	429.0	417.6	406.7	396.3	386.3	376.7	367.6	358.8	350.4	342.3	334.5	327.
2.0	450.4	438.0	426.1	414.8	404.0	393.6	383.7	374.3	365.2	356.5	348.1	340.1	332.4	325.
3.0	447.3	435.0	423.2	412.0	401.3	391.0	381.2	371.8	362.8	354.2	345.9	338.0	330.4	323
4.0	444.2	432.0	420.4	409.2	398.6	388.5	378.7	369.4	360.5	351.9	343.7	335.9	328.3	321.
5.0	441.1	429.1	417.5	406.5	396.0	385.9	376.3	367.0	358.2	349.7	341.6	333.7	326.2	319.
6.0	438.1	426.1	414.7	403.8	393.3	383.3	373.8	364.6	355.9	347.5	339.4	331.6	324.2	317.
7.0	435.1	423.2	411.9	401.1	390.7	380.8	371.3	362.3	353.6	345.2	337.2	329.6	322.2	315.
8.0	432.1	420.3	409.1	398.4	388.1	378.3	368.9	359.9	351.3	343.0	335.1	327.5	320.2	313.
9.0	429.1	417.5	406.3	395.7	385.5	375.8	366.5	357.6	349.0	340.8	333.0	325.4	318.2	311.
10.0	426.1	414.6	403.6	393.0	383.0	373.3	364.1	355.2	346.8	338.6	330.8	323.4	316.2	309.
11.0	423.2	411.8	400.8	390.4	380.4	370.8	361.7	352.9	344.5	336.5	328.7	321.3	314.2	307.
12.0	420.3	409.0	398.1	387.8	377.9	368.4	359.3	350.6	342.3	334.3	326.7	319.3	312.2	305.
13.0	417.4	406.2	395.4	385.2	375.3	366.0	357.0	348.3	340.1	332.2	324.6	317.3	310.3	303.
440		100 1	200 7	200.0	270.0	202 5	254.0	2404	227.0	222	200 5	2452	200.2	204

Sensor calibration

Gas sensors respond to partial pressure not concentration

Henrys law:

- Concentration = Solubility × Partial pressure
- Partial pressure = Concentration/solubility

If solubility is constant

• Δ Concentration = Δ Partial pressure

If concentration is constant

• Δ Solubility = Δ Partial pressure

Partial pressure is affected by temperature and salinity

Sensor calibration

Salinity effect – Gas sensors: i.e. O₂, H₂, N₂O, H₂S, NO

Bubbling with gas, add salt to increase salinity

=> constant partial pressure

Salt added while bubbling 140 120 Relative sensor signal (%) 100 80 60 40 20 0 30 35 10 Salinity (%)

The partial pressure of the gas is **not** affected by salinity at continuous bubbling

Sensor calib

Henrys law:

Partial pressure = Concentration/solubility

Salinity effect – Gas sensors: i.e. O₂, H₂, N₂O, H₂S, NO

Dilution of stock solution to a given concentration

at different salinities

different salinities 140 Relative sensor signal (%) 120 100 80 60 Salinity ↑ Solubility ↓ 40 Partial pressure 1 20 10 15 20 25 30 35 Salinity (%)

Same concentration at

At fixed concentration:
The partial pressure of the gas is affected by salinity

Temperature effect on measurement

Temperature effect – example O₂ sensor

Temperature affects measurements

The Lab UniAmp instruments may automatically correct for this

- Calculation of concentration from sensor signal is a two-step process:
 - 1. Sensor signal (mV) \rightarrow Partial pressure (mmHg)
 - 2. Partial pressure (mmHg) \rightarrow Concentration (μ M)
- Temperature affects both 1 and 2
 - 1. The internal <u>Sensor response</u>
 - 2. The *Solubility effect*

Conversion of signal to concentration

These two relations are affected by temperature

SensorTrace – Temperature compensation

Sensor calibration - Potential challenges

Sensor calibration - Potential challenges

Sensor calibration - Potential challenges

Displacement of working electrode!

Before After

Sensor calibration - Recommendations

- Use experimental/in-situ conditions for sensor calibration
 - Temperature
 - Salinity
- Be careful with baseline (zero) definition
- Always calibrate the sensor at the beginning of the experimental work
 - Know the sensor works well
 - Get results even when breaking a sensor
- Calibrate often
 - Signal drift
 - Signal jump

Unisense Microsensor Academy:

https://www.unisense.com/support/knowledge

Contact us: sales@unisense.com